Defini?ie. Dac? la intersec?ia a dou? drepte concurente a ?i b unul dintre unghiurile ce se formeaz? în jurul punctului lor de intersec?ie este un unghi drept, atunci cele dou? drepte concurente se numesc drepte perpendiculare sau drepte ortogonale. Nota?ie. (“a perpendicular pe b”; “dreptele a ?i b sunt perpendiculare”) sau
(“b perpendicular pe a”; “dreptele a ?i b sunt perpendiculare”).
Dintr-un punct M, exterior unei drepte date a, se poate duce pe dreapta a o singur? perpendicular?. Punctul M’, unde perpendiculara MM’ intersecteaz? dreapta dat? a, se nume?te piciorul perpendicularei duse din punctul M pe dreapta a. Distan?a dintre punctele M ?i M' se nume?te distan?a de la punctul M la dreapta a. A?adar, prin distan?a de la un punct la o dreapt? vom în?elege distan?a dintre punctul considerat ?i piciorul perpendicularei din acel punct pe acea dreapt?.
Într-un punct N al unei drepte a exist? o singur? perpendicular? pe dreapta a. În acest caz, piciorul perpendicularei este chiar punctul N; deci, distan?a de la N la dreapta a este lungimea segmentului ”nul", adic? este egal? cu zero.
Defini?ie. Mediatoarea unui segment este dreapta perpendicular? pe segment în mijlocul segmentului. Mediatoarea unui segment este unic?, adic? un segment are o singur? mediatoare.
Defini?ie. Dac? dou? drepte care se intersecteaz? nu sunt perpendiculare, atunci se spune c? una este oblic? fa?? de cealalt?.
|